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Engineered nonlinear lattices
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We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that
trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are
sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed
structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In
particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are
wide the beams evolve in a structure we term aquasilattice, which interpolates between a lattice system and a
continuous system.@S1063-651X~99!51311-1#

PACS number~s!: 42.65.Wi, 42.65.Ky, 42.65.Tg
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Nonlinear wave-mixing in a homogeneous nonlinear m
dium requires that the phase mismatch between the inte
ing waves be very small. Alternatively, the intrinsic pha
mismatch can be compensated for in an inhomogeneous
dium with a periodic grating. The latter method is known
the quasi-phase-matching~QPM! technique, which in the las
few years has become widely employed in wave-mixing
periments due to the remarkable progress made in dom
inversion techniques, notably for samples made of lithi
niobate@1#.

The potential of QPM extends far beyond the efficie
phase matching of a single wave-mixing process which ta
place in a sample with a regular, periodic grating. More co
plicated grating patterns can be fabricated, which result
media with unusual properties that can thus be engineere
a controllable fashion. This has been explored in a variety
devices that are based on creative grating designs. For
ample, temporal pulse compression@2#, spatial beam com-
pression with solitons@3#, broadband phase matching@4#,
and even a quasiperiodic spectrum of wavelength conver
@5# has been demonstrated to occur in samples where
grating periodicity was broken in the longitudinal directio
Samples with grating patterns in thetransversedirection
have been used for beam tailoring@6#, a wavelength con-
verter with broad tuning range@7#, and beam steering with
solitons@8#.

In this Rapid Communication we explore the possibil
of producing transversely patterned gratings and conside
array ofnarrow grating stripes, as indicated in Fig. 1. Ea
stripe is composed of gratings with a narrow width, in t
sense that the gratings are confined in the transverse d
tion to a width which is less than the beam width. Expe
mental setups usually require tightly focused beams w
widths of 10;20 mm. Grating stripes with these widths ca
be implemented with the current state of the art lithograp
QPM technology@6,9#, but even smaller grating width
PRE 601063-651X/99/60~5!/5064~4!/$15.00
-
ct-

e-
s

-
in-

t
s
-
in
in
f
x-

on
he

an

c-
-
h

c

might be more challenging. So far, there have been no
tempts to fabricate such narrow gratings, so the feasibilit
an open question and only an experimental trial can give
answer. In practice, it can be anticipated that inhomoge
ities appear along the interfaces between grating stripes
grating-free regions@10#.

Our aim is to make a construction with alatticelike na-
ture, in which each grating stripe plays the role of asite in
the lattice. If the lattice features prevail, the beam evolut
should essentially be governed by a discrete system, in c
analogy to the beam evolution in an array of weakly coup
quadratic nonlinear waveguides@11#. In the present study we
will restrict ourselves to the simplest possible grating des
with discrete features. However, it should be remarked t
more involved layouts can be envisaged with possible uni
properties. For example, different lattices that each q
siphase match a particular wavelength may be interleave
form a complex multi-wavelength discrete system. Inclus
of chirped, tilted, or dislocated gratings@8# in the region
between the lattice sites could provide novel classes of n
linear couplings between lattice sites. Furthermore, a lat
with competing nonlinearities may be constructed by explo
ing the Kerr-like effects, which are inherent in the QP
technique@12#.

In order to substantiate the investigation we conside
fundamental field at wavelengthl1 and its second harmoni

FIG. 1. Schematic top view of grating design of QPM structur
R5064 © 1999 The American Physical Society
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at wavelengthl2 propagating in the structure, which is sch
matically shown in Fig. 1. In the slowly varying envelop
approximation the dynamics of the envelope amplitudes
the fundamental,a1, and the second harmonic,a2, are gov-
erned by the equations

i
]a1

]z
1

1

2

]2a1

]x2
1d~z,x!a1* a2e2 ibz50,

~1!

i
]a2

]z
1

1

4

]2a2

]x2
1d~z,x!a1

2eibz50,

where b5Dkk1h2 with Dk52k12k2, is the phase mis-
match,k1 andk2 are the wave number at each waveleng
and h is a normalization parameter, which we set equal
the beam width. The relationships between normalized (z,x)
and physical (Z,X) distances are given byx5X/h for the
transverse direction andz5Z/(2l d) for the longitudinal di-
rection, wherel d is the diffraction length of the fundamenta
beam l d5h2k1/2. In lithium niobate withl1;1 mm and
h;15 mm one findsl d;1 mm. The grating function from
Fig. 1 is described byd(z,x),

d~z,x!5(
n

g~x2xn!(
m

dmeikmz, ~2!

with xn5nh, whereh is the distance between adjacent gr
ings. The grating wave numberk5p/L, where L is the
domain length, whiledm are the Fourier coefficients for th
grating, d2m50 andd2m11522i /(2m11). The comblike
transverse grating structure is composed of a sequenc
‘‘hat functions,’’ g(x2xn), which are each centered onxn ,

g~x!5m~x2b/2!2m~x1b/2!, ~3!

wherem(x) is Heaviside’s function andb is the width of the
gratings.

In the longitudinal direction, the coherence leng
l c5p/uDku, is much shorter than any other scale. Therefo
we may average Eqs.~1! over a period ofl c . We assume
first order QPM, i.e.,L; l c , and introduceA15bp/2^a1&,
A252 ibp/2^a2&exp(2ib̃z) for the scaled, averaged env
lopes. In the lowest order approximation we find@12,15#

i
]A1

]z
1

1

2

]2A1

]x2
1

1

b (
n

g~x2xn!A1* A250,

~4!

i
]A2

]z
1

1

4

]2A2

]x2
2b̃A21

1

b (
n

g~x2xn!A1
250,

where b̃5b2k is the residual phase mismatch. Equatio
~4! conserve both the powerI 5*2`

` uA1u21uA2u2dx and the
Hamiltonian,

H5 1
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2`

` S U]A1

]x U2
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As b→0 the stripes degenerate into a lattice of nonline
impurities embedded in a linear medium. A fundamental p
requisite for the proper functioning of the lattice is that lig
is actually trapped at each individual site, similarly to t
way light is trapped in modes of a linear waveguide. T
present structure does not provide a refractive index cha
so light should be trapped entirely by the presence of a g
ing stripe, which defines a narrow peak where nonlinear
fects are present. It can be anticipated that at least with v
narrow gratings such trapping will occur, since it has be
shown that various types of the so-calledimpurity modes
exist in quadratic nonlinear media with a single, isolated i
purity embedded@13,14#. For the present structure, the re
evant impurity modes are found by looking for the bou
states of Eqs.~4! in the limit b→0, h→`. Since this is a
linear medium with a single, isolated nonlinear impurity, t
modes are readily found analytically. This suggests that w
narrow gratings, light may indeed be trapped at each s
However, we should keep in mind that the limit of vanishin
b makes the whole analysis invalid. The gratings will in th
case disappear and the transformationaj→Aj will be singu-
lar. Still, with b→0, Eqs.~4! will be relevant as a model o
photonic crystals@14,16#. In the general case withbÞ0 we
have to resort to numerical calculations. These demonst
that modes which are exponentially localized in the line
regions exist with any site width. We therefore expect th
the beam dynamics also in that case will possess disc
features.

In order to proceed with the analysis, we follow a pa
similar to a treatment of impurities in the nonlinear Schr¨-
dinger equation@17#: We solve Eqs.~4! in each linear layer
and express the solution in terms of the amplitudes at
nonlinear sites. In the limitb→0, the solutions in the linea
layers can be connected by integration across the nonli
sites yielding that the evolution of these site amplitudes
given by a set of coupled ordinary differential equations,

i
dBn

dz
1

1

2h2
~Bn111Bn2122Bn!1

1

h
Bn* Dn50,

~6!

i
dDn

dz
1

1

4h2
~Dn111Dn2122Dn!2b̃Dn1

1

h
Bn

250,

Bn and Dn are the amplitudes on thenth site of the funda-
mental and second harmonic, respectively. In deriving E
~6! we assumed the following ordering forBn :

]

]z
;e, Bn;e, Bn111Bn2122Bn;eBn , ~7!

and a similar ordering forDn . The parametere indicates the
relative magnitude of the terms. See Ref.@17# for an explicit
derivation. The ordering suggests that the discrete mode~6!
will not be accurate with large beam amplitudes. Also, t
derivation is based on the limitb→0, so narrow gratings are
necessary for the accuracy of Eq.~6!. However, we have
observed from numerical simulations that when these co
tions are not fulfilled, meaning thatb is nonvanishing or even
large, or the beam amplitudes are large, the beam dyna
still bears the characteristic features of discreteness. Bu
that case it is not captured by the simple Eqs.~6!. We expect
that asb is increased from zero, the QPM structure w
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interpolate between a fully discrete system (b50) and a
continuous medium (b5h). Thus, we refer to the structur
as a quasilattice.

With the purpose of exposing the interpolating charac
of the quasilattice, we have numerically found the localiz
stationary modes of the structure, i.e., we have insertedA1
5A(x)exp(iqz) and A25B(x)exp(i2qz) in Eqs. ~4! and
solved the resulting boundary value problem. We expect
at least for some parameter values such stationary solu
will exist and be stable, since in the two limitsb50 andb
5h they will tend to the familiar discrete@11# and continu-
ous solitons@18#, respectively. In Fig. 2 we plot the ampl
tude B(x) of the numerically found stationary modes wi
h51, b̃51 and two different values ofb andq. The corre-
sponding profiles of the solitons in the limitsb50 and b
5h are superimposed on the plots as dashed and do
lines, respectively. It should be clear that with smallb the
stationary modes resemble the discrete soliton, while w
largeb they resemble the continuous solitons. Also, we n
that with large amplitudes (q large! a relatively small value
of b is required in order to obtain a good resemblance to
discrete solitons.

Although the appearance of the profiles of the station
modes indicates in a neat way how the quasilattice inter
lates between a discrete lattice and the continuum, it does
provide a complete characterization of the quasilattice.
this end, it will be necessary also to investigate themobility
of the localized modes. It is well known that discrete solito
lose energy if they are forced to move across the lattice,
that their mobility decreases as their power content is
creased. In contrast, continuous solitons are in a system
translational symmetry and can move freely with any vel
ity ~angle!. For a review of the properties of moving breat
ers in the context of optics see, e.g., Ref.@19#. As a qualita-
tive measure of the mobility of modes in the quasilattice
calculate the Peierls-Nabarro~PN! potential of the modes

FIG. 2. Second harmonic part of stationary localized mo
~solid lines! with b̃51 andh51. Superimposed are profiles of con
tinuous solitons withb5h ~dotted lines! and discrete solitons with
b50 ~dashed lines!. The shaded areas indicate the regions wh
g(x)51, i.e., the nonlinear regions.~a! b50.3, q50.25, ~b! b
50.7, q50.25, ~c! b50.2, q51.5, and~d! b50.7, q51.5.
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The modes shown in Fig. 2 are called odd modes, since
have their peak amplitude centered on a site, thus yieldin
profile with an odd number of peaks. The so-called ev
modes, with an even number of peaks which are centere
between two sites, can also be found. The PN potential is
difference in Hamiltonian energyH between the even an
the odd mode with a fixed powerI. The idea behind using the
PN potential as a measure of mobility relies on the assu
tion that when the odd mode moves from one site to the n
it transforms into an even mode in the process. The diff
ence in Hamiltonian energy is thus a potential barrier t
must be overcome in the process of translation@20#. It seems
plausible that an odd mode actually does not follow a p
exactly via an even mode when moving from site to site,
probably the PN potential can still give a qualitative sugg
tion for the mobility. In Fig. 3~a! we plot the PN barrier
versusb for the modes in the quasilattice withb̃53, h51,
and three values ofI.

Figure 3 also includes a measure of the actual mobility
the modes in the quasilattice. We have made a careful
merical study solving Eqs.~1! with a variety of initial con-
ditions and parameter values. For the numerical simulati
we chose parameter values that are relevant for tightly
cused beams in a sample made of lithium niobate, yield
b;400. We measure the mobility by launching a mode w
an initial phase tilt,v: aj→aj exp(ijvx), which will induce a
velocity in the mode, forcing it to move across the lattic
The results of a series of such numerical experiments
indicated in Fig. 3~b!. The imposed initial velocity isv
50.5 and the initial position isx0525. We plot the output
position in x after the mode has propagated a distanceL
530 in z. Comparing the PN barrier and the actual mobil

FIG. 4. Output atz530. Stemplot~bullets on lines! are results
from discrete Eqs.~6! and lines are from Eqs.~1! with b50.25
~solid lines! and b50.5 ~dashed lines!. b̃51, b5400, andh51.
Input position and velocity isx05210 andv50.5, respectively.
~a! Fundamental and~b! second harmonic.

s

e

FIG. 3. ~a! Peierls-Nabarro barrier and~b! output position inx
of peak amplitude atz530 vsb. Input position and velocity are25
and 0.5, respectively. Numbers indicate value of power,I. b̃53,
b5400, andh51.
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determined from numerical simulations, the qualitati
agreement is visible. They both reveal that localized mo
in the quasilattice interpolate between the tendency to
trapped in the discrete limit and the free translation in
continuous limit.

Finally, we give an example where the simple discr
system~6! predicts correctly the behavior of the beam d
namics in the original system~1!. A mode with an initial
phase tiltv50.5 is launched with an initial positionx05
210, and the output position atz530 is shown in Fig. 4.
The results from the discrete system~6!, which are marked
with bullets, show that the mode has been slowed down
the discreteness and is positioned atx55. The results from
numerical simulations of Eqs.~1! with b50.25 show that the
mode moves in the quasilattice in agreement with Eq.~6!,
indicating that the quasilattice is effectively discrete. T
results for the simulations withb50.5 show that the mode
-
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.

.

t.
s
e

e

e

y

moves in agreement with the translational symmetry o
continuous system, since the mode has not been slo
down. Still, features reminiscent of discreteness are visibl
the appearance of the profiles of the freely moving mode

In summary, we have investigated engineered qu
phase-matched samples with transverse comb patterns
found that beam evolution in these samples possesses
characteristic properties of a discrete system. By mean
investigation of the breather profiles and breather mobil
we have shown that the samples interpolate between f
discrete systems and continuous systems, the tuning pa
eter being the widthb of each grating line. The quasilattice
make it possible to devise discrete quadratic lattices w
properties that can be engineered to meet specific needs

We are most grateful to M. M. Fejer for important discu
sions and remarks.
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